Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9495, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664570

RESUMEN

The biological mechanisms regulating tenocyte differentiation and morphological maturation have not been well-established, partly due to the lack of reliable in vitro systems that produce highly aligned collagenous tissues. In this study, we developed a scaffold-free, three-dimensional (3D) tendon culture system using mouse tendon cells in a differentially adherent growth channel. Transforming Growth Factor-ß (TGFß) signaling is involved in various biological processes in the tendon, regulating tendon cell fate, recruitment and maintenance of tenocytes, and matrix organization. This known function of TGFß signaling in tendon prompted us to utilize TGFß1 to induce tendon-like structures in 3D tendon constructs. TGFß1 treatment promoted a tendon-like structure in the peripheral layer of the constructs characterized by increased thickness with a gradual decrease in cell density and highly aligned collagen matrix. TGFß1 also enhanced cell proliferation, matrix production, and morphological maturation of cells in the peripheral layer compared to vehicle treatment. TGFß1 treatment also induced early tenogenic differentiation and resulted in sufficient mechanical integrity, allowing biomechanical testing. The current study suggests that this scaffold-free 3D tendon cell culture system could be an in vitro platform to investigate underlying biological mechanisms that regulate tenogenic cell differentiation and matrix organization.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Tendones , Tenocitos , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Tendones/citología , Tendones/metabolismo , Ratones , Diferenciación Celular/efectos de los fármacos , Tenocitos/metabolismo , Tenocitos/citología , Proliferación Celular/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Ingeniería de Tejidos/métodos
2.
Nat Commun ; 14(1): 2075, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045839

RESUMEN

Collagen is a force-bearing, hierarchical structural protein important to all connective tissue. In tendon collagen, high load even below macroscopic failure level creates mechanoradicals by homolytic bond scission, similar to polymers. The location and type of initial rupture sites critically decide on both the mechanical and chemical impact of these micro-ruptures on the tissue, but are yet to be explored. We here use scale-bridging simulations supported by gel electrophoresis and mass spectrometry to determine breakage points in collagen. We find collagen crosslinks, as opposed to the backbone, to harbor the weakest bonds, with one particular bond in trivalent crosslinks as the most dominant rupture site. We identify this bond as sacrificial, rupturing prior to other bonds while maintaining the material's integrity. Also, collagen's weak bonds funnel ruptures such that the potentially harmful mechanoradicals are readily stabilized. Our results suggest this unique failure mode of collagen to be tailored towards combatting an early onset of macroscopic failure and material ageing.


Asunto(s)
Colágeno , Tejido Conectivo , Colágeno/metabolismo , Tejido Conectivo/metabolismo , Fenómenos Mecánicos , Polímeros/química , Tendones
3.
PeerJ ; 10: e12841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127295

RESUMEN

Human usage of coastal water bodies continues to increase and many invertebrates face a broad suite of anthropogenic stressors (e.g., warming, pollution, acidification, fishing pressure). Underwater sound is a stressor that continues to increase in coastal areas, but the potential impact on invertebrates is not well understood. In addition to masking natural sound cues which may be important for behavioral interactions, there is a small but increasing body of scientific literature indicating sublethal physiological stress may occur in invertebrates exposed to high levels of underwater sound, particularly low frequency sounds such as vessel traffic, construction noise, and some types of sonar. Juvenile and sub-adult blue crabs (Callinectes sapidus) and American lobsters (Homarus americanus) were exposed to simulated low-frequency vessel noise (a signal was low-pass filtered below 1 kHz to ensure low-frequency content only) and mid-frequency sonar (a 1-s 1.67 kHz continuous wave pulse followed by a 2.5 to 4.0 kHz 1-s linear frequency modulated chirp) and behavioral response (the animal's activity level) was quantified during and after exposure using EthoVision XT™ from overhead video recordings. Source noise was quantified by particle acceleration and pressure. Physiological response to the insults (stress and recovery) were also quantified by measuring changes in hemolymph heat shock protein (HSP27) and glucose over 7 days post-exposure. In general, physiological indicators returned to baseline levels within approximately 48 h, and no observable difference in mortality between treatment and control animals was detected. However, there was a consistent amplified hemolymph glucose signal present 7 days after exposure for those animals exposed to mid-frequency sound and there were changes to C. sapidus competitive behavior within 24 h of exposure to sound. These results stress the importance of considering the impacts of underwater sound among the suite of stressors facing marine and estuarine invertebrates, and in the discussion of management actions such as protected areas, impact assessments, and marine spatial planning efforts.


Asunto(s)
Ruido , Sonido , Animales , Humanos , Ruido/efectos adversos , Invertebrados , Espectrografía del Sonido
4.
Matrix Biol Plus ; 12: 100070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825162

RESUMEN

Tendons and ligaments tend to be pooled into a single category as dense elastic bands of collagenous connective tissue. They do have many similar properties, for example both tissues are flexible cords of fibrous tissue that join bone to either muscle or bone. Tendons and ligaments are both prone to degenerate and rupture with only limited capacity to heal, although tendons tend to heal faster than ligaments. Type I collagen constitutes about 80% of the dry weight of tendons and ligaments and is principally responsible for the core strength of each tissue. Collagen synthesis is a complex process with multiple steps and numerous post-translational modifications including proline and lysine hydroxylation, hydroxylysine glycosylation and covalent cross-linking. The chemistry, placement and quantity of intramolecular and intermolecular cross-links are believed to be key contributors to the tissue-specific variations in material strength and biological properties of collagens. As tendons and ligaments grow and develop, the collagen cross-links are known to chemically mature, strengthen and change in profile. Accordingly, changes in cross-linking and other post-translational modifications are likely associated with tissue development and degeneration. Using mass spectrometry, we have compared tendon and ligaments from fetal and adult bovine knee joints to investigate changes in collagen post-translational properties. Although hydroxylation levels at the type I collagen helical cross-linking lysine residues were similar in all adult tissues, ligaments had significantly higher levels of glycosylation at these sites compared to tendon. Differences in lysine hydroxylation were also found between the tissues at the telopeptide cross-linking sites. Total collagen cross-linking analysis, including mature trivalent cross-links and immature divalent cross-links, revealed unique cross-linking profiles between tendon and ligament tissues. Tendons were found to have a significantly higher frequency of smaller diameter collagen fibrils compared with ligament, which we suspect is functionally associated with the unique cross-linking profile of each tissue. Understanding the specific molecular characteristics that define and distinguish these specialized tissues will be important to improving the design of orthopedic treatment approaches.

5.
Matrix Biol Plus ; 12: 100077, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34337380

RESUMEN

For next generation tissue-engineered constructs and regenerative medicine to succeed clinically, the basic biology and extracellular matrix composition of tissues that these repair techniques seek to restore have to be fully determined. Using the latest reagents coupled with tried and tested methodologies, we continue to uncover previously undetected structural proteins in mature intervertebral disc. In this study we show that the "embryonic" type IIA procollagen isoform (containing a cysteine-rich amino propeptide) was biochemically detectable in the annulus fibrosus of both calf and mature steer caudal intervertebral discs, but not in the nucleus pulposus where the type IIB isoform was predominantly localized. Specifically, the triple-helical type IIA procollagen isoform immunolocalized in the outer margins of the inner annulus fibrosus. Triple helical processed type II collagen exclusively localized within the inter-lamellae regions and with type IIA procollagen in the intra-lamellae regions. Mass spectrometry of the α1(II) collagen chains from the region where type IIA procollagen localized showed high 3-hydroxylation of Proline-944, a post-translational modification that is correlated with thin collagen fibrils as in the nucleus pulposus. The findings implicate small diameter fibrils of type IIA procollagen in select regions of the annulus fibrosus where it likely contributes to the organization of collagen bundles and structural properties within the type I-type II collagen transition zone.

6.
Sci Rep ; 11(1): 10868, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035379

RESUMEN

Tendon plays a critical role in the joint movement by transmitting force from muscle to bone. This transmission of force is facilitated by its specialized structure, which consists of highly aligned extracellular matrix consisting predominantly of type I collagen. Tenocytes, fibroblast-like tendon cells residing between the parallel collagen fibers, regulate this specialized tendon matrix. Despite the importance of collagen structure and tenocyte function, the biological mechanisms regulating fibrillogenesis and tenocyte maturation are not well understood. Here we examine the function of Reticulocalbin 3 (Rcn3) in collagen fibrillogenesis and tenocyte maturation during postnatal tendon development using a genetic mouse model. Loss of Rcn3 in tendon caused decreased tendon thickness, abnormal tendon cell maturation, and decreased mechanical properties. Interestingly, Rcn3 deficient mice exhibited a smaller collagen fibril distribution and over-hydroxylation in C-telopeptide cross-linking lysine from α1(1) chain. Additionally, the proline 3-hydroxylation sites in type I collagen were also over-hydroxylated in Rcn3 deficient mice. Our data collectively suggest that Rcn3 is a pivotal regulator of collagen fibrillogenesis and tenocyte maturation during postnatal tendon development.


Asunto(s)
Proteínas de Unión al Calcio/genética , Colágeno/metabolismo , Tendones/crecimiento & desarrollo , Tendones/metabolismo , Animales , Biomarcadores , Diferenciación Celular , Técnicas de Silenciamiento del Gen , Hidrólisis , Inmunohistoquímica , Espectrometría de Masas , Ratones , Ratones Noqueados , Organogénesis/genética , Tendones/embriología
7.
Elife ; 102021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34036937

RESUMEN

Osteogenesis imperfecta (OI) is characterized by short stature, skeletal deformities, low bone mass, and motor deficits. A subset of OI patients also present with joint hypermobility; however, the role of tendon dysfunction in OI pathogenesis is largely unknown. Using the Crtap-/- mouse model of severe, recessive OI, we found that mutant Achilles and patellar tendons were thinner and weaker with increased collagen cross-links and reduced collagen fibril size at 1- and 4-months compared to wildtype. Patellar tendons from Crtap-/- mice also had altered numbers of CD146+CD200+ and CD146-CD200+ progenitor-like cells at skeletal maturity. RNA-seq analysis of Achilles and patellar tendons from 1-month Crtap-/- mice revealed dysregulation in matrix and tendon marker gene expression concomitant with predicted alterations in TGF-ß, inflammatory, and metabolic signaling. At 4-months, Crtap-/- mice showed increased αSMA, MMP2, and phospho-NFκB staining in the patellar tendon consistent with excess matrix remodeling and tissue inflammation. Finally, a series of behavioral tests showed severe motor impairments and reduced grip strength in 4-month Crtap-/- mice - a phenotype that correlates with the tendon pathology.


Asunto(s)
Tendón Calcáneo/patología , Proteínas de la Matriz Extracelular/deficiencia , Actividad Motora , Osteogénesis Imperfecta/patología , Osteogénesis Imperfecta/fisiopatología , Ligamento Rotuliano/patología , Tendón Calcáneo/metabolismo , Actinas/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/genética , Colágenos Fibrilares/genética , Colágenos Fibrilares/metabolismo , Genes Recesivos , Predisposición Genética a la Enfermedad , Fuerza de la Mano , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/genética , FN-kappa B/metabolismo , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Ligamento Rotuliano/metabolismo , Fenotipo , Fosforilación , Resistencia Física , Células Madre/metabolismo , Células Madre/patología
8.
Nat Commun ; 11(1): 2315, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385229

RESUMEN

As established nearly a century ago, mechanoradicals originate from homolytic bond scission in polymers. The existence, nature and biological relevance of mechanoradicals in proteins, instead, are unknown. We here show that mechanical stress on collagen produces radicals and subsequently reactive oxygen species, essential biological signaling molecules. Electron-paramagnetic resonance (EPR) spectroscopy of stretched rat tail tendon, atomistic molecular dynamics simulations and quantum-chemical calculations show that the radicals form by bond scission in the direct vicinity of crosslinks in collagen. Radicals migrate to adjacent clusters of aromatic residues and stabilize on oxidized tyrosyl radicals, giving rise to a distinct EPR spectrum consistent with a stable dihydroxyphenylalanine (DOPA) radical. The protein mechanoradicals, as a yet undiscovered source of oxidative stress, finally convert into hydrogen peroxide. Our study suggests collagen I to have evolved as a radical sponge against mechano-oxidative damage and proposes a mechanism for exercise-induced oxidative stress and redox-mediated pathophysiological processes.


Asunto(s)
Colágeno/química , Tendones/química , Animales , Materiales Biocompatibles/química , Biopolímeros/química , Dihidroxifenilalanina/química , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Oxidación-Reducción , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno/química
9.
Rev. colomb. cienc. pecu ; 32(2): 150-157, abr.-jun. 2019. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1013925

RESUMEN

Abstract Background: Paragonimus spp. are trematode parasites that infect human populations worldwide. It is believed that infection rates within Asia reach five to ten percent of the total population. Three of the largest areas of possible infection are Asia, Central and South America as well as Africa, where the total population at risk is estimated to be 293 million people. Humans are infected via ingestion of raw or undercooked decapod crustaceans. Objective: To identify the presence of Paragonimus spp. in crabs from Bogotá, Colombia. Methods: The native crab Neostrengeria macropa and the aquatic invasive crayfish Procambarus clarkii in Bogotá, Colombia, were collected from local markets, pet stores and waterways and dissected to assess the presence of Paragonimus spp. Results: The native crab species, N. macropa (n=29) had an infection prevalence of 17.2%, while the invasive crayfish species, P. clarkii (n=22), had a prevalence of 36.4% combined from both field captured animals and purchased samples. Conclusion: Although the estimated prevalence is lower compared to previous studies in other cities of Colombia, Paragonimus represent a risk to human health. Several environmental factors may contribute to the difference in prevalence including collecting season, rainfall, temperature, altitude and the El Niño Southern Oscillation.


Resumen Antecedentes: Los Paragonimus spp. constituyen un grupo de parásitos tremátodos que infectan a humanos en todo el mundo. Se considera que entre 5 y 10% de la población humana de Asia está infectada. Las áreas con mayor posibilidad de infección son Asia, Centro y Sur América, así como África. Se estima que 293 millones de personas están en riesgo de infección. Los humanos se pueden infectar al consumir crustáceos decápodos crudos. Objetivo: Identificar la presencia de Paragonimus spp. en crustáceos en Bogotá, Colombia. Métodos: Una muestra de cangrejos nativos Neostrengeria macropa y de decápodos invasores Procambarus clarkii fue colectada tanto en mercados locales de Bogotá, como en tiendas de mascotas, ríos, y quebradas. Posteriromente fueron diseccionados para detectar la presencia de Paragonimus spp. Resultados: La prevalencia de la infección en N. macropa (n=29) fue de 17,2%, y en la especie invasora, P. clarkii (n=22), fue de 36,4% (porcentaje combinado de los animales colectados en el campo y los comprados en tiendas). Conclusión: Aunque la prevalencia en este estudio fue más baja que la de otras investigaciones relacionadas, se considera que existe riesgo para la salud humana. Es probable que algunos factores medio ambientales hayan contribuido a la diferencia, incluyendo: temporada de colecta, nivel de lluvias, temperatura, altura, y el fenómeno El Niño.

10.
PeerJ ; 6: e5446, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30128204

RESUMEN

The invasive Asian shore crab, Hemigrapsus sanguineus, is ubiquitous in the rocky intertidal zone of the western North Atlantic. A likely contributor to this colonization is that H. sanguineus is able to handle a wide range of salinities, and is thus more likely to spread through a greater geographic area of estuaries. This study investigated the salinity effects on this animal by observing survival across a range of salinities, the maintenance of hemolymph osmolality under different salinities, and behavioral preference for and avoidance of salinities. H. sanguineus showed high survival across a broad range of salinities, had little change in hemolymph osmolality over a short-term salinity shock, and behaviorally distinguished between salinities when presented with a choice, under both acclimation salinities of 5 PSU or 35 PSU. Such results suggest H. sanguineus has a hardiness for the rapid changes in salinity that happen in the intertidal zone, yet is capable of physically moving to a more optimal salinity. This enhances their competitiveness as an invader, particularly surviving lower salinities that present challenges during high-precipitation events in rocky intertidal areas, and partially explains this species' dominance in this habitat type.

11.
J Biol Chem ; 293(40): 15620-15627, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30143533

RESUMEN

Nonenzymatic glycation of collagen has long been associated with the progressive secondary complications of diabetes. How exactly such random glycations result in impaired tissues is still poorly understood. Because of the slow turnover rate of most fibrillar collagens, they are more susceptible to accumulate time-dependent glycations and subsequent advanced glycation end-products. The latter are believed to include cross-links that stiffen host tissues. However, diabetic animal models have also displayed weakened tendons with reduced stiffness. Strikingly, not a single experimentally identified specific molecular site of glycation in a collagen has been reported. Here, using targeted MS, we have identified partial fructosyl-hydroxylysine glycations at each of the helical domain cross-linking sites of type I collagen that are elevated in tissues from a diabetic mouse model. Glycation was not found at any other collagen lysine residues. Type I collagen in mouse tendons is cross-linked intermolecularly by acid-labile aldimine bonds formed by the addition of telopeptide lysine aldehydes to hydroxylysine residues at positions α1(I)Lys87, α1(I)Lys930, α2(I)Lys87, and α2(I)Lys933 of the triple helix. Our data reveal that site-specific glycations of these specific lysines may significantly impair normal lysyl oxidase-controlled cross-linking in diabetic tendons. We propose that such N-linked glycations can hinder the normal cross-linking process, thus altering the content and/or placement of mature cross-links with the potential to modify tissue material properties.


Asunto(s)
Colágeno Tipo I/química , Diabetes Mellitus Tipo 2/metabolismo , Lisina/química , Obesidad/metabolismo , Tendones/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Glucemia/metabolismo , Colágeno Tipo I/metabolismo , Reactivos de Enlaces Cruzados/química , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Hemoglobina Glucada/metabolismo , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Hidroxilación , Hidroxilisina/química , Hidroxilisina/metabolismo , Lisina/metabolismo , Masculino , Espectrometría de Masas , Ratones , Obesidad/patología , Proteína-Lisina 6-Oxidasa/química , Proteína-Lisina 6-Oxidasa/metabolismo , Cola (estructura animal) , Tendones/química , Tendones/patología
12.
J Biol Chem ; 292(9): 3877-3887, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28115524

RESUMEN

Tandem mass spectrometry was applied to tissues from targeted mutant mouse models to explore the collagen substrate specificities of individual members of the prolyl 3-hydroxylase (P3H) gene family. Previous studies revealed that P3h1 preferentially 3-hydroxylates proline at a single site in collagen type I chains, whereas P3h2 is responsible for 3-hydroxylating multiple proline sites in collagen types I, II, IV, and V. In screening for collagen substrate sites for the remaining members of the vertebrate P3H family, P3h3 and Sc65 knock-out mice revealed a common lysine under-hydroxylation effect at helical domain cross-linking sites in skin, bone, tendon, aorta, and cornea. No effect on prolyl 3-hydroxylation was evident on screening the spectrum of known 3-hydroxyproline sites from all major tissue collagen types. However, collagen type I extracted from both Sc65-/- and P3h3-/- skin revealed the same abnormal chain pattern on SDS-PAGE with an overabundance of a γ112 cross-linked trimer. The latter proved to be from native molecules that had intramolecular aldol cross-links at each end. The lysine under-hydroxylation was shown to alter the divalent aldimine cross-link chemistry of mutant skin collagen. Furthermore, the ratio of mature HP/LP cross-links in bone of both P3h3-/- and Sc65-/- mice was reversed compared with wild type, consistent with the level of lysine under-hydroxylation seen in individual chains at cross-linking sites. The effect on cross-linking lysines was quantitatively very similar to that previously observed in EDS VIA human and Plod1-/- mouse tissues, suggesting that P3H3 and/or SC65 mutations may cause as yet undefined EDS variants.


Asunto(s)
Autoantígenos/genética , Colágeno/química , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Lisina/química , Procolágeno-Prolina Dioxigenasa/genética , Animales , Aorta/metabolismo , Huesos/metabolismo , Cromatografía Liquida , Córnea/metabolismo , Reactivos de Enlaces Cruzados/química , Dentina/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Hidroxilación , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Procesamiento Proteico-Postraduccional , Piel/metabolismo
13.
PeerJ ; 4: e2265, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547570

RESUMEN

To investigate community shelter effects of two invasive decapod species, Hemigrapsus sanguineus and Carcinus maenas, in the Long Island Sound (LIS), we deployed artificial shelters in the intertidal and immediate subtidal zones. These consisted of five groups during the summer: a control, a resident H. sanguineus male or female group, and a resident C. maenas male or female group. We quantified utilization of the shelters at 24 h by counting crabs and fish present. We found significant avoidance of H. sanguineus in the field by benthic hermit crabs (Pagurus spp.) and significant avoidance of C. maenas by the seaboard goby (Gobiosoma ginsburgi). The grubby (Myoxocephalus aenaeus) avoided neither treatment, probably since it tends to be a predator of invertebrates. H. sanguineus avoided C. maenas treatments, whereas C. maenas did not avoid any treatment. Seasonal deployments in the subtidal indicated cohabitation of a number of benthic species in the LIS, with peak shelter use corresponding with increased predation and likely reproductive activity in spring and summer for green crabs (C. maenas), hermit crabs (Pagurus spp.), seaboard gobies (G. ginsburgi), and grubbies (Myoxocephalus aenaeus).

14.
PLoS Genet ; 12(4): e1006002, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27119146

RESUMEN

Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis.


Asunto(s)
Autoantígenos/metabolismo , Colágeno/biosíntesis , Retículo Endoplásmico/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Autoantígenos/genética , Huesos/fisiología , Línea Celular , Colágeno/metabolismo , Ciclofilinas/metabolismo , Matriz Extracelular/metabolismo , Hidroxilación/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética
15.
J Biol Chem ; 290(13): 8613-22, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25645914

RESUMEN

Myopia, the leading cause of visual impairment worldwide, results from an increase in the axial length of the eyeball. Mutations in LEPREL1, the gene encoding prolyl 3-hydroxylase-2 (P3H2), have recently been identified in individuals with recessively inherited nonsyndromic severe myopia. P3H2 is a member of a family of genes that includes three isoenzymes of prolyl 3-hydroxylase (P3H), P3H1, P3H2, and P3H3. Fundamentally, it is understood that P3H1 is responsible for converting proline to 3-hydroxyproline. This limited additional knowledge also suggests that each isoenzyme has evolved different collagen sequence-preferred substrate specificities. In this study, differences in prolyl 3-hydroxylation were screened in eye tissues from P3h2-null (P3h2(n/n)) and wild-type mice to seek tissue-specific effects due the lack of P3H2 activity on post-translational collagen chemistry that could explain myopia. The mice were viable and had no gross musculoskeletal phenotypes. Tissues from sclera and cornea (type I collagen) and lens capsule (type IV collagen) were dissected from mouse eyes, and multiple sites of prolyl 3-hydroxylation were identified by mass spectrometry. The level of prolyl 3-hydroxylation at multiple substrate sites from type I collagen chains was high in sclera, similar to tendon. Almost every known site of prolyl 3-hydroxylation in types I and IV collagen from P3h2(n/n) mouse eye tissues was significantly under-hydroxylated compared with their wild-type littermates. We conclude that altered collagen prolyl 3-hydroxylation is caused by loss of P3H2. We hypothesize that this leads to structural abnormalities in multiple eye tissues, but particularly sclera, causing progressive myopia.


Asunto(s)
Miopía/genética , Procolágeno-Prolina Dioxigenasa/genética , Secuencia de Aminoácidos , Animales , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/metabolismo , Córnea/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Hidroxilación , Cápsula del Cristalino/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Especificidad de Órganos , Fenotipo , Procolágeno-Prolina Dioxigenasa/metabolismo , Procesamiento Proteico-Postraduccional , Esclerótica/enzimología , Esclerótica/patología
16.
PLoS One ; 9(4): e93467, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24695516

RESUMEN

Approximately half the proline residues in fibrillar collagen are hydroxylated. The predominant form is 4-hydroxyproline, which helps fold and stabilize the triple helix. A minor form, 3-hydroxyproline, still has no clear function. Using peptide mass spectrometry, we recently revealed several previously unknown molecular sites of 3-hydroxyproline in fibrillar collagen chains. In fibril-forming A-clade collagen chains, four new partially occupied 3-hydroxyproline sites were found (A2, A3, A4 and (GPP)n) in addition to the fully occupied A1 site at Pro986. The C-terminal (GPP)n motif has five consecutive GPP triplets in α1(I), four in α2(I) and three in α1(II), all subject to 3-hydroxylation. The evolutionary origins of this substrate sequence were investigated by surveying the pattern of its 3-hydroxyproline occupancy from early chordates through amphibians, birds and mammals. Different tissue sources of type I collagen (tendon, bone and skin) and type II collagen (cartilage and notochord) were examined by mass spectrometry. The (GPP)n domain was found to be a major substrate for 3-hydroxylation only in vertebrate fibrillar collagens. In higher vertebrates (mouse, bovine and human), up to five 3-hydroxyproline residues per (GPP)n motif were found in α1(I) and four in α2(I), with an average of two residues per chain. In vertebrate type I collagen the modification exhibited clear tissue specificity, with 3-hydroxyproline prominent only in tendon. The occupancy also showed developmental changes in Achilles tendon, with increasing 3-hydroxyproline levels with age. The biological significance is unclear but the level of 3-hydroxylation at the (GPP)n site appears to have increased as tendons evolved and shows both tendon type and developmental variations within a species.


Asunto(s)
Colágeno Tipo II/metabolismo , Colágeno Tipo I/metabolismo , Hidroxiprolina/metabolismo , Tendones/metabolismo , Vertebrados/metabolismo , Secuencia de Aminoácidos , Animales , Huesos/metabolismo , Bovinos , Pollos/metabolismo , Evolución Molecular , Colágenos Fibrilares/metabolismo , Humanos , Hidroxilación/fisiología , Lampreas/metabolismo , Estructura Terciaria de Proteína , Xenopus laevis/metabolismo
17.
Connect Tissue Res ; 54(4-5): 245-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23772978

RESUMEN

Prolyl 3-hydroxylation is a rare but conserved post-translational modification in many collagen types and, when defective, may be linked to a number of human diseases with musculoskeletal and potentially ocular and renal pathologies. Prolyl 3-hydroxylase-1 (P3H1), the enzyme responsible for converting proline to 3-hydroxyproline (3Hyp) in type I collagen, requires the coenzyme CRTAP for activity. Mass spectrometric analysis showed that the Crtap-/- mouse was missing 3-hydroxyproline in type I collagen α-chains. This finding led to the discovery of mutations in genes encoding the P3H1 complex as a cause of recessively inherited osteogenesis imperfecta (brittle bone disease). Since then, many additional 3Hyp sites have been identified in various collagen types and classified based on observed substrate and tissue specificity. P3H1 is part of a family of gene products that also includes isoenzymes P3H2 and P3H3 as well as CRTAP and Sc65. It is believed these isoenzymes and coenzyme proteins have evolved different collagen substrate site and tissue specificities in their activities. The post-translational fingerprinting of collagens will be essential in understanding the basic role and extent of regulated variations of prolyl 3-hydroxylation in collagen. We believe that prolyl 3-hydroxylation is a functionally significant collagen post-translational modification and can be a cause of disease when absent.


Asunto(s)
Colágeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Colágeno/química , Colágeno Tipo I/metabolismo , Proteínas de la Matriz Extracelular , Humanos , Hidroxilación , Ratones , Chaperonas Moleculares , Especificidad de Órganos , Osteogénesis Imperfecta/genética , Procolágeno-Prolina Dioxigenasa/genética , Proteínas/genética , Especificidad por Sustrato
18.
Biochemistry ; 51(12): 2417-24, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22380708

RESUMEN

Proline residues in collagens are extensively hydroxylated post-translationally. A rare form of this modification, (3S,2S)-l-hydroxyproline (3Hyp), remains without a clear function. Disruption of the enzyme complex responsible for prolyl 3-hydroxylation results in severe forms of recessive osteogenesis imperfecta (OI). These OI types exhibit a loss of or reduction in the level of 3-hydroxylation at two proline residues, α1(I) Pro986 and α2(I) Pro707. Whether the resulting brittle bone phenotype is caused by the lack of the 3-hydroxyl addition or by another function of the enzyme complex is unknown. We have speculated that the most efficient mechanism for explaining the chemistry of collagen intermolecular cross-linking is for pairs of collagen molecules in register to be the subunit that assembles into fibrils. In this concept, the exposed hydroxyls from 3Hyp are positioned within mutually interactive binding motifs on adjacent collagen molecules that contribute through hydrogen bonding to the process of fibril supramolecular assembly. Here we report observations on the physical binding properties of 3Hyp in collagen chains from experiments designed to explore the potential for interaction using synthetic collagen-like peptides containing 3Hyp. Evidence of self-association was observed between a synthetic peptide containing 3Hyp and the CB6 domain of the α1(I) chain, which contains the single fully 3-hydroxylated proline. Using collagen from a case of severe recessive OI with a CRTAP defect, in which Pro986 was minimally 3-hydroxylated, such binding was not observed. Further study of the role of 3Hyp in supramolecular assembly is warranted for understanding the evolution of tissue-specific variations in collagen fibril organization.


Asunto(s)
Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Hidroxiprolina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Multimerización de Proteína , Adulto , Secuencia de Aminoácidos , Humanos , Enlace de Hidrógeno , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
19.
PLoS One ; 6(5): e19336, 2011 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21559283

RESUMEN

Recessive mutations that prevent 3-hydroxyproline formation in type I collagen have been shown to cause forms of osteogenesis imperfecta. In mammals, all A-clade collagen chains with a GPP sequence at the A1 site (P986), except α1(III), have 3Hyp at residue P986. Available avian, amphibian and reptilian type III collagen sequences from the genomic database (Ensembl) all differ in sequence motif from mammals at the A1 site. This suggests a potential evolutionary distinction in prolyl 3-hydroxylation between mammals and earlier vertebrates. Using peptide mass spectrometry, we confirmed that this 3Hyp site is fully occupied in α1(III) from an amphibian, Xenopus laevis, as it is in chicken. A thorough characterization of all predicted 3Hyp sites in collagen types I, II, III and V from chicken and xenopus revealed further differences in the pattern of occupancy of the A3 site (P707). In mammals only α2(I) and α2(V) chains had any 3Hyp at the A3 site, whereas in chicken all α-chains except α1(III) had A3 at least partially 3-hydroxylated. The A3 site was also partially 3-hydroxylated in xenopus α1(I). Minor differences in covalent cross-linking between chicken, xenopus and mammal type I and III collagens were also found as a potential index of evolving functional differences. The function of 3Hyp is still unknown but observed differences in site occupancy during vertebrate evolution are likely to give important clues.


Asunto(s)
Hidroxiprolina/metabolismo , Mutación , Osteogénesis Imperfecta/genética , Secuencias de Aminoácidos , Animales , Sitios de Unión , Pollos , Colágeno/química , Colágeno Tipo III , Reactivos de Enlaces Cruzados/farmacología , Evolución Molecular , Genes Recesivos , Humanos , Espectrometría de Masas/métodos , Especificidad de la Especie , Especificidad por Sustrato , Temperatura , Xenopus laevis
20.
J Biol Chem ; 286(10): 7732-7736, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21239503

RESUMEN

Because of its unique physical and chemical properties, rat tail tendon collagen has long been favored for crystallographic and biochemical studies of fibril structure. In studies of the distribution of 3-hydroxyproline in type I collagen of rat bone, skin, and tail tendon by mass spectrometry, the repeating sequences of Gly-Pro-Pro (GPP) triplets at the C terminus of α1(I) and α2(I) chains were shown to be heavily 3-hydroxylated in tendon but not in skin and bone. By isolating the tryptic peptides and subjecting them to Edman sequence analysis, the presence of repeating 3-hydroxyprolines in consecutive GPP triplets adjacent to 4-hydroxyproline was confirmed as a unique feature of the tendon collagen. A 1960s study by Piez et al. (Piez, K. A., Eigner, E. A., and Lewis, M. S. (1963) Biochemistry 2, 58-66) in which they compared the amino acid compositions of rat skin and tail tendon type I collagen chains indeed showed 3-4 residues of 3Hyp in tendon α1(I) and α2(I) chains but only one 3Hyp residue in skin α1(I) and none in α2(I). The present work therefore confirms this difference and localizes the additional 3Hyp to the GPP repeat at the C terminus of the triple-helix. We speculate on the significance in terms of a potential function in contributing to the unique assembly mechanism and molecular packing in tendon collagen fibrils and on mechanisms that could regulate 3-hydroxylation at this novel substrate site in a tissue-specific manner.


Asunto(s)
Colágeno Tipo I/química , Hidroxiprolina/química , Tendones/química , Secuencias de Aminoácidos , Animales , Colágeno Tipo I/metabolismo , Hidroxilación/fisiología , Hidroxiprolina/metabolismo , Espectrometría de Masas , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley , Piel/química , Piel/metabolismo , Tendones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...